Non-Lipschitz lp-Regularization and Box Constrained Model for Image Restoration

نویسندگان

  • Xiaojun Chen
  • Michael K. Ng
  • Chao Zhang
چکیده

Nonsmooth nonconvex regularization has remarkable advantages for the restoration of piecewise constant images. Constrained optimization can improve the image restoration using a priori information. In this paper, we study regularized nonsmooth nonconvex minimization with box constraints for image restoration. We present a computable positive constant θ for using nonconvex nonsmooth regularization, and show that the difference between each pixel and its four adjacent neighbors is either 0 or larger than θ in the recovered image. Moreover, we give an explicit form of θ for the box-constrained image restoration model with the non-Lipschitz nonconvex l(p)-norm regularization. Our theoretical results show that any local minimizer of this imaging restoration problem is composed of constant regions surrounded by closed contours and edges. Numerical examples are presented to validate the theoretical results, and show that the proposed model can recover image restoration results very well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smoothing Quadratic Regularization Methods for Box Constrained Non-lipschitz Optimization in Image Restoration

Abstract. We propose a smoothing quadratic regularization (SQR) method for solving box constrained optimization problems with a non-Lipschitz regularization term that includes the lp norm (0 < p < 1) of the gradient of the underlying image in the l2-lp problem as a special case. At each iteration of the SQR algorithm, a new iterate is generated by solving a strongly convex quadratic problem wit...

متن کامل

Nonconvex `p -regularization and Box Constrained Model for Image Restoration

Abstract. Nonsmooth nonconvex regularization has remarkable advantages for the restoration of piecewise constant images. Constrained optimization can improve the image restoration using a priori information. In this paper, we study regularized nonsmooth nonconvex minimization with box constraints for image restoration. We present a computable positive constant θ for using nonconvex nonsmooth re...

متن کامل

Linearly Constrained Non-Lipschitz Optimization for Image Restoration

Abstract. Nonsmooth nonconvex optimization models have been widely used in the restoration and reconstruction of real images. In this paper, we consider a linearly constrained optimization problem with a non-Lipschitz regularization term in the objective function which includes the lp norm (0 < p < 1) of the gradient of the underlying image in the l2-lp problem as a special case. We prove that ...

متن کامل

Optimality and Complexity for Constrained Optimization Problems with Nonconvex Regularization

In this paper, we consider a class of constrained optimization problems where the feasible set is a general closed convex set and the objective function has a nonsmooth, nonconvex regularizer. Such regularizer includes widely used SCAD, MCP, logistic, fraction, hard thresholding and non-Lipschitz Lp penalties as special cases. Using the theory of the generalized directional derivative and the t...

متن کامل

PSO-Optimized Blind Image Deconvolution for Improved Detectability in Poor Visual Conditions

Abstract: Image restoration is a critical step in many vision applications. Due to the poor quality of Passive Millimeter Wave (PMMW) images, especially in marine and underwater environment, developing strong algorithms for the restoration of these images is of primary importance. In addition, little information about image degradation process, which is referred to as Point Spread Function (PSF...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on image processing : a publication of the IEEE Signal Processing Society

دوره 21 12  شماره 

صفحات  -

تاریخ انتشار 2012